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Objectives

| will talk about:

» The angular noise that couples differential arm length (DARM)
» A Fabry-Perot cavity misalignment model
» Measuring test mass angular spectra

» Results of angular misalignment coupling
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Advanced LIGO Simplified Optical Layout

» DARM is gravitational wave output signal
» Angular noises couple to DARM and reduce sensitivity
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Angular Sensing and Control Noise

» Angular sensing and control noise is a major contributor to DARM below 15 Hz
as shown below [1].

» Low frequency sensitivity is important for binary neutron star mergers.

» This noise budget contains linear and non-linear couplings. | want to know
non-linear contribution.
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Angular Coupling Model
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What is Angle to Length Coupling?

» Angular misalignments cause a change in length of the Fabry-Perot
cavity.

» The beam is constrained by the two centers of curvature.

» This change in cavity length couples to DARM.
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Angular Coupling Model
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Change in Cavity Length

The exact solution isn't simple:
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But a Taylor series gives a simpler result.
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Where the cavity g factor is: gi =1 — R%_
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Hard & Soft Basis

» LIGO uses the hard-soft basis to understand the mirror setup
(pictured below).

6, Soft Mode (Translation) 9, 6,  Hard Mode (Rotation) ‘EL

This leads to a decoupled cavity length change equation:

AL = Che%ard + Csogoft
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Angular Coupling Model
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Two Cavity Hard & Soft Basis

We can describe the two cavity with combination of hard-soft modes.
» Differential hard: 64, = % (GX;, — Gyh)
> Differential soft: fgs =  (0xs — 0ys)
» Common hard: Ocy, = 3 (0xn + Oy)

> Common soft: Oy = 3 (Oxs + Oys)
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Angular Coupling to DARM

The single cavity model can be extended to the dual cavity case.

ADARM = AL, — ALy = aachedh + 5ach0ds + ﬂacsadh + ’Yecsods

For Livingston, the constants are equal to:

o = —156191—
rad

m

= 23379.1—

p rad®
m

= 3897.58—

7 rad®
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Measurement & Results
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Discussion of Mirror Static Offset

» We wish to estimate the non-linear angular coupling to DARM

» Each angle has a time series like:
Oror(t) = Op + 0(1)

» Therefore, we have set the static offset for each mode, 6, equal to
zero through our experimental setup
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Measurement & Results
O@0000

Measuring Spectra of Modes by Dithering

» Dithered (modulated) all test masses at a set frequency

» Demodulated DARM output gets answer proportional to a single
modes’ spectra (repeated for other modes)

» Dither amplitudes chosen a priori to get single term linear
demodulated output. eg: dmod(DARM) = Cynlan

» Find mode spectrum from demodulated output
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Hard-Soft Mode Spectra

» We dithered at at 48.7 Hz to measure the spectra of all the modes
» Above 3 Hz, the spectra are noise
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Measurement & Results
[e]e]e] lele]

Transmon QPD Layout

» Transmon QPD are only accurate for high frequency angle
measurement
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Measurement & Results
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High Frequency Mode Spectra

» Used a least mean square fit to match the dither measurement and
Transmon QPD signals at frequencies below 1 Hz [left]

» Transmon QPD signals provide accurate higher frequency spectra up
to 10 Hz [right]
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Measurement & Results
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Angular Noise Estimate

ADARM = a9ch9dh + 69ch0ds + 50559(”, + y@cseds

» Found DARM spectra with the approximation:
F(01(t) - 02(t)) = 05501 (F) + 0705 (F)
» Non-linear angle to length coupling is small compared to DARM
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Conclusion & References
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Conclusions

Takeaways:

» Angular noise DARM coupling is given by analytic model of test
mass angles

» Dithering technique can be used to find non-linear low frequency
angular spectra

» Transmon QPD could be used to measure high frequency angular
spectra

» From our measurements, non-linear angular noise is not a main
contribution to DARM below 10 Hz

Future inquiry:
» Extend cavity length model to all mirrors in interferometer

» Validate test mass angular measurement technique using other
sensors and simulations
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Extra Slides
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Extra slide: Constants referenced in paper
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