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Introduction



Introduction Science with Gravitational Waves

Image of first detection of gravitational waves in 2015.
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[LIGO+ 2016, Bailes+ 2021]

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1038/s42254-021-00303-8
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[Miller+ 2019]

https://doi.org/10.1038/s41586-019-1129-z


Introduction Science with Gravitational Waves

Current & Future Science Goals

1 Astrophysics of compact objects:
formation scenarios and exotic
systems

2 Nuclear physics: tidal deformability
and neutron‐star equation of state

3 Multimessenger astrophysics:
electromagnetic counterparts and
kilonova

4 Cosmology: independently measuring
expansion of universe

5 Stochastic background: unresolved
background of gravitational waves

6 Lensing signatures
7 Fundamental physics: testing

consistency with general relativity
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[Chruslinska 2022]

https://doi.org/10.1002/andp.202200170
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[Carson 2020]

https://doi.org/10.18130/v3-pxdw-2144
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[LIGO+ 2017]

https://doi.org/10.3847/2041-8213/aa920c
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[NASA / WMAP Science Team]

https://map.gsfc.nasa.gov/media/060915/index.html
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[LIGO+ 2023]

https://doi.org/10.1103/PhysRevX.13.011048
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[Jana+ 2023]

https://doi.org/10.1103/PhysRevLett.130.261401
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[Yunes+ 2016,Bailes+ 2021]

https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1038/s42254-021-00303-8
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Current & Future Detectors
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[LIGO Lab]

https://www.ligo.caltech.edu/page/ligo-detectors
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[LISA Collaboration 2017]

https://arxiv.org/abs/1702.00786
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[DECIGO 2017]

https://doi.org/10.1007/s12567-017-0177-1
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Introduction Waveforms Features

Gravitational Waves Encode Intrinsic Binary Physics

masses inferred via frequency evolution

distance measured via amplitude and masses

modulations of amplitude and phase
encode spins

eccentricity also manifests in
amplitude and phase modulations
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Introduction Waveforms Features

Beyond GR Waveforms
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Beyond GR simulation of dynamical Chern-Simons [Okounkova+ 2023]
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https://doi.org/10.1103/PhysRevD.107.024046
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Beyond GR Waveforms

Beyond GR simulation of scalar tensor [Ma+ 2023]
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https://doi.org/10.1103/PhysRevD.107.124051


Introduction Waveforms Features

Parameterized Tests of General Relativity

Beyond GR signals are typically characterized by dephasing

hbgr(f ; θ, α) = hgr(f ; θ)e i∆Ψ(f ;α)

GR param
(Mc , χeff, ...)

Beyond GR param
(αdCS, αST, δϕk , ...)

The parameterized post-Einsteinian (ppE) framework is a common
beyond GR signal morphology [Yunes+ 2009, Li+ 2011]

∆Ψk ∝ δϕk (πMf )(k−5)/3

where each of these δϕk ↔ deviation of (M/r)k away from GR

B Seymour 05/05/25 13 / 50
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Introduction Waveforms Features

PPE in Time Domain
These ppE deviations in time domain look like [Carson+ 2020]

B Seymour 05/05/25 14 / 50

https://doi.org/10.1007/978-981-15-4702-7_41-1


Introduction Waveforms Features

How do We Interperate Parameterized Constraints

Intrinsic physics of the inspiral are encoded in the phase of the
waveform.

The frequency chirp is related to the energy loss rate in the system by

df
dt =

df
dE

dE
dt

df
dE is due to modified Kepler’s third law, dE

dt due to dissipative
modifications.
A beyond GR effect causes relative time delays ∆t(f ) and then the
stationary phase approximation for an adiabatic energy loss rate
implies [Yunes+ 2009, Tahura+ 2019]

∆Ψ(f ) = 2π
∫

df ∆t(f )

B Seymour 05/05/25 15 / 50
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Introduction Waveforms Features

Luminosity Ė
GW energy loss rate

(dissipative)

Energy E(f)
Kepler’s third law

(conservative)

df
dt ∝ (πMf)

11/3
(1 + εv(f))

frequency chirp rate

t(f) = tgr(f) + ∆t(f)

h̃(f) = h̃gr(f)e
i∆Ψ(f)
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Part A : Searching for Nonviolent Nonlocality in the
Gravitational Waves



Part A : Gravitational Waves in Nonviolent Nonlocality Motivation for Nonviolent Nonlocality

Possibilities for the Black Hole Unitarity Crisis

It is proposed that the following three statements cannot be true
simultaneously [Almheiri+ 2012]

1 Hawking radiation is a pure state.

Breakdown of unitary evolution.

2 Infalling observer feels nothing unusual at the horizon.

Infalling observer is destroyed, e.g. firewall

3 Hawking radiation comes from near the horizon.

Horizon structure of a black hole is changed, e.g. nonviolent
nonlocality.

B Seymour 05/05/25 18 / 50
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Part A : Gravitational Waves in Nonviolent Nonlocality Motivation for Nonviolent Nonlocality

Nonviolent Nonlocality

Nonviolent nonlocality is a proposal by Steve Giddings that posits
that the information is transferred via soft modes in the black hole
atmosphere [Giddings 2012, Giddings+ 2016].
These metric fluctuations have an extent to ∼ rS in contrast to the
fluctuations in a firewall with extent lp � rS

We have background metric, and the quantum fluctuations modify it

gµν = g schw
µν + nµν

B Seymour 05/05/25 19 / 50
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Modifications to the Metric due to Quantum Structure

One can construct the most general metric fluctuations [Regge+ 1957],
but the dominant one in ingoing Eddington-Finkelstein coordinates is
[Giddings+ 2016]

nvv =
∑
`m

n`m
vv (v , r)Y`m(φ, θ)

We parameterize the random noise fluctuations as

n`m
vv (v , r) = A exp

[
− 1

2r2
S
(r − rS)

2
]

n(t)

n(t) = Colored gaussian noise; 〈|n(t)|〉 = 1

Sn(f ) ∝
1

2fQ
exp [−|f |/fQ ]

B Seymour 05/05/25 20 / 50

https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.97.084035


Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Modifications to the Metric due to Quantum Structure

One can construct the most general metric fluctuations [Regge+ 1957],
but the dominant one in ingoing Eddington-Finkelstein coordinates is
[Giddings+ 2016]

nvv =
∑
`m

n`m
vv (v , r)Y`m(φ, θ)

We parameterize the random noise fluctuations as

n`m
vv (v , r) = A exp

[
− 1

2r2
S
(r − rS)

2
]

n(t)

n(t) = Colored gaussian noise; 〈|n(t)|〉 = 1

Sn(f ) ∝
1

2fQ
exp [−|f |/fQ ]

B Seymour 05/05/25 20 / 50

https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.97.084035


Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Effective One-Body

The effective one-body formalism is an analytical approach to finding
the motion and gravitational waves in GR [Buonanno+ 1998, 2000, Damour
2001].
It resums independent information from (a) post-Newtonian theory
and (b) black hole perturbation theory

B Seymour 05/05/25 21 / 50
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Effective One-Body
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Effective One-Body Details
The effective one-body defines an effective metric

ds2
eff = −A(r)dt2 +

D(r)
A(r) dr2 + r2dΩ2

where if η → 0 it approaches the Schwarzschild metric in the
nonspinning case.
One can find that solving the mass shell condition pµpνgµν = −1
yields an effective Hamiltonian

Ĥeff =

√√√√A(r)
(

1 +
p2
φ

r2 +
A
D p2

r

)
The particle follows the trajectory of the real Hamiltonian

Ĥreal =
1
η

√
1 + 2η

(
Ĥeff − 1

)
+O(~P2

COM)

where the center of mass motion is ignored.
B Seymour 05/05/25 23 / 50



Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Perturbations to Hamilton’s Equations

Nonviolent nonlocality adds perturbations to black holes which
changes the mass shell condition

pµpν
(
gµν

0 + nµν
)
= −1

This causes the real Hamiltonian to be modified

Ĥreal = Ĥ0
real + n`m

vv ∆Ĥreal
`m .

In the end, we integrate Hamilton’s equations which have the form

dqi
dt =

∂Ĥreal
∂pi

,

dpi
dt = −∂Ĥreal

∂qi
+ F rad

i ,

where F rad
i are the nonconservative forces from radiation reaction.

B Seymour 05/05/25 24 / 50
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∂Ĥreal
∂pi

,

dpi
dt = −∂Ĥreal
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Inspiral with Quantum Fluctuations
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Change in Gravitational Wave Strain
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Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Random Dephasing in Frequency Domain
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Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Fisher Analysis

We inject θ = (ζ,Mc , q,Dl , ι, ψ, α, δ) from realistic astrophysical
populations and compute the estimated variance with the Fisher
matrix

Γij =
(
∂θi h|∂θj h

)
where (.|.) is the standard noise weighted inner product.

From this we calculate the marginalized likelihood p(da|ζ) for each
event a. The likelihood for the hyper parameters is

p(d |µ, σ) =
∫

dζp(d |ζ)p(ζ|µ, σ)

From this, we compute the posterior on A ≡ σ by combining many
events da.
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Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Constraints on Nonviolent Nonlocality with LIGO
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Metric fluctuations can be constrained to be A . 6 × 10−3

with 5 years of O3 data.
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Part B : Geometric Description of Tests of GR Geometry of Waveform Deviations

Testing GR with Incorrect Signal Models

Gravitational wave data is a combination of signal and noise

d = s + n
s = hsig(θtr, αtr) = hgr(f ; θtr)e i∆Ψbgr

The true beyond GR phase modification is

∆Ψbgr(f , α) = αψα(f )
A ppE test searches for power law deviations

∆Ψk = δϕk (πMc f )(k−5)/3

1 How degenerate with GR parameters is ∆Ψbgr?
2 How accurately ppE ∆Ψk captures the true deviation ∆Ψbgr?
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Part B : Geometric Description of Tests of GR Geometry of Waveform Deviations

Residual Signal

Doing PE on hsig(θtr, αtr) with a GR waveform hgr(θ), the residual
signal

∆h = hsig(θtr, αtr)− hgr(θtr)

≈ iαtrψαhgr(θtr)

GR parameters are biased due to systematic error [Cutler+ 2007]

θmeas → θtr +∆θbias

The residual signal is perpendicular part of the waveform

∆h⊥gr = ∆h −∆θi
bias∂ihgr

For example if you don’t model spins and just try to measure Mc and
q, the answers will be biased.
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Part B : Geometric Description of Tests of GR Geometry of Waveform Deviations

hs(θ t,α t)

hm(θ t) hm(θ ML)
∆h⊥

∆h‖

∆h

d1

d 2

d 3
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Part B : Geometric Description of Tests of GR Geometry of Waveform Deviations

Perpendicular SNR and Bayes Factors

Given an injected signal hsig(θtr, αtr), we compute the evidence for
both GR and bGR [p(GR|d) and p(bGR|d)]
The Bayes factor compares the evidence for a beyond GR theory in
the data

ObGR
GR ≡ p(bGR|d)

p(GR|d)

The Bayes factor behaves like [Vallisneri 2009, 2013]

logObGR
GR |sbGR ∼ 1

2ρ
2
⊥ + ρ⊥x +

1
2x2 (bGR injection)

logObGR
GR |sGR ∼ 1

2x2 (GR injection)

where ρ⊥ = ‖s⊥bGR‖ and x is random unit normal variable.
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Bayes Factor for Parameterized Test
How accurately does ppE ∆Ψk captures the true deviation ∆Ψbgr?

The Bayes factor with an incorrect ppE model is

logOppE
GR |sbGR ∼ 1

2

(
ρppE
⊥

)2
+ xρppE

⊥ +
1
2x2

where the captured SNR is
ρppE
⊥ = FF(∆h⊥

bGR,∆h⊥
ppE) ρ⊥

The fitting factor describes how much of the bGR signal is captured
by the ppE model

FF(∆h⊥
bGR,∆h⊥

ppE) =

(
∆h⊥

bGR|∆h⊥
ppE

)
‖∆h⊥

bGR‖‖∆h⊥
ppE‖

We have found that that the sensitivity loss is very small
(1 − FF � 1) for some non-PN theories [Seymour+ 2024].

∆ΨNVNL ∼ e−f −1 has essential singularity at f = 0 =⇒ no ppE
power
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Visualization of Test
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests
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Monotonic phase deviations have some universal features in how they deviate
fom GR.

1 The ppE phasing terms can capture general deviations from GR.
2 A deviation from one ppE phasing term will look like another one in data.



Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Degeneracy of Multiparameter ppE
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Singular Value Decomposition Approach

Since the ppE parameter tests are degenerate, we need to identify
common modes of the waveform
We generalize the singular value decomposition [Pai+ 2013] to identify
nondegenerate deviations from GR

The singular value decomposition finds the common features by
identifying ∆hα [Tiglio+ 2022]

C(∆hα) =
∑

a
‖∆ha − Pn∆ha‖2

where the projection Pn projects to an orthonormal SVD basis

Pn∆ha =
∑
α

(∆ha|∆hα)∆hα

(∆hα|∆hβ) = δαβ

Goal is to find nsvd � nppE but still fit signal well
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Visualization of Multiparameter SVD

Step 1: compute ∆hppE
Step 2: ∆h⊥ppE computed by projecting

terms parallel to ∂θ ihgr
SVD 1

SVD 2

Step 3: Compute ∆h⊥SVD with
the singular value decomposition
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Multiparameter SVD Example for GW150914
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These SVD waveform modes are orthogonal so that
(i∆ΨSVD ahgr|i∆ΨSVD bhgr) = s2

aδab
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Part C : High Frequency Gravitational Wave Detection

How Detectors Measure Gravitational Waves

The light at the photodiode is a mixture of signal and noise.

i(f ) = Th(f )h(f ) +
∑

i
Ti(f )ni(f )

The PSD is then equal to

Sh(f ) =
1

|Th(f )|2
∑

i
|Ti(f )|2Sj(f )

Can we modify the optimal frequency that we are sensitive at by
detuning the location of the signal recycling mirror?
Th(f ;φsrm) can be adjusted to search for gravitational waves at high
frequencies [Meers 1988, Mizuno+ 1993].
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Part C : High Frequency Gravitational Wave Detection
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Part C : High Frequency Gravitational Wave Detection
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GEO600 detector improves the detection prospects on boson clouds
(M = 0.3 M�, χ = 0.7 using model from [Isi+ 2018])
Quasicircular sub-solar mass mergers 10−3M� . M . 10−1 M� have
no improvement in sensitivity.
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Conclusion

Conclusions

1 Studied the prospects for detecting nonviolent nonlocality in LIGO
Modeled the waveform in the effective-one-body formalism
Showed that stochastic deviations to phase are expected
Stacked together many events to estimate constraints in LIGO

2 Identified geometrical meaning of tests of GR
Explained degeneracies and significance by geometrical framework
Characterized systematic error of using parameterized models
Used singular value decomposition to identify common modes

3 Modeled the effects of high frequency sensitivity in GEO600 by
modulating the signal recycling cavity location.
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Frequency Domain Dephasing Model

From the figure before, we saw that the random metric fluctuations
produce dephasing which has a lot of structure.
We use a principal component analysis to model the dephasing in a
simple manner.

The mean deviation and covariance matrix are defined as

µ ≡ 〈∆Ψ(f )〉

Σ(f , f ′) = 〈(∆Ψ(f )− µ(f ))
(
∆Ψ(f ′)− µ(f ′)

)
〉

The principal component analysis finds optimal eigenvectors

Σ(f , f ′) ≈ A2 z(f )z(f ′) ,
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Hierarchical Tests of GR

What we have shown is that nonviolent nonlocality predicts stochastic
deviations to the phase ∆Ψ(f ) = ζz(f ).

ζ ∼ N (0,A)

This is of the same form ot the hierarchical tests of GR [Isi+ 2019]
which are published in the LIGO papers [LIGO+ 2021].

δφk ∼ N (µk , σk)

where these are the deformation coefficients.
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Fisher Analysis

We inject θ = (ζ,Mc , q,Dl , ι, ψ, α, δ) from realistic astrophysical
populations and compute the estimated variance with the Fisher
matrix

Γij =
(
∂θi h|∂θj h

)
where (.|.) is the standard noise weighted inner product.

From this we calculate the marginalized likelihood p(da|ζ) for each
event a. The likelihood for the hyper parameters is

p(d |µ, σ) =
∫

dζp(d |ζ)p(ζ|µ, σ)

From this, we compute the posterior on the hyper parameters

p({d} |µ, σ) =
∏

a
p(da|µ, σ)
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Bayes Factor

To compare the consistency with GR, we use the log Bayes factor

BNVNL
GR = log

(
p({d} |MNVNL)

p({d} |MGR)

)
where MGR and MNVNL are the models.
This is a scalar statistic which quantifies whether GR is preferred
(positive) or NVNL (negative).
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Constraints on Nonviolent Nonlocality with CE
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GEO600 Noise Budget
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Detuning LIGO
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Sub Solar Mass Detuned GEO600
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Boson Clouds Full Plot
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