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Introduction Science with Gravitational Waves
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@ Image of first detection of gravitational waves in 2015.
[LIGO+ 2016, Bailes+ 2021]
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https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1038/s42254-021-00303-8

Introduction Science with Gravitational Waves

Gravitational wave Black hole Spacetime

Mirror Mirror

Beam Light
splitter  detector

N Light waves cancel
) " s = XX' each other out
Laser f = Light waves hit
the light detector

[Miller+ 2019]
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Introduction Science with Gravitational Waves

Current & Future Science Goals

Large Asymmetric Spins
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Introduction Science with Gravitational Waves

Current & Future Science Goals

@ Nuclear physics: tidal deformability
and neutron-star equation of state

Gravitational-wave strain
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Introduction Science with Gravitational Waves

Current & Future Science Goals

Lightcurve from INTEGRAL/SPI-ACS
120000 (> 100 keV)

Event rate (counts/s)
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[LIGO+ 2017]
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Introduction Science with Gravitational Waves

Current & Future Science Goals

@ Cosmology: independently measuring
expansion of universe

Big Bang Expansion

13.77 billion years

[NASA / WMAP Science Team]
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https://map.gsfc.nasa.gov/media/060915/index.html

Introduction Science with Gravitational Waves

Current & Future Science Goals
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Introduction Science with Gravitational Waves

Current & Future Science Goals

@ Lensing signatures

[Jana+ 2023]
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Introduction Science with Gravitational Waves

Current & Future Science Goals
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@ Fundamental physics: testing
consistency with general relativity
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Current & Future Detectors
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Current & Future Detectors
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https://www.ligo.caltech.edu/page/ligo-detectors
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Current & Future Detectors
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Current & Future Detectors

10—18 -

n 11
N \1 minute -

10—20
2 LISA o 1 sc(:on
.t ~
i - o\\\ GW150914
-~ =A
‘B 10—22 L \ -
é l“ LIGO
10—24 S 1 AU (150 million km) ) i
Cosmic Explorer
10—26 | | | ]
1073 1073 101 10* 103 108

frequency [Hz]

[LISA Collaboration 2017]

R TG


https://arxiv.org/abs/1702.00786

Introduction Science with Gravitational Waves

Current & Future Detectors
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Current & Future Detectors
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Introduction Science with Gravitational Waves

Current & Future Detectors

: [ (Part 1) Hierarchical Triples Near
Active Galactic Nuclei (not in talk)
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Current & Future Detectors
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Current & Future Detectors
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Introduction Waveforms Features

Inspiral Merger Ringdown
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Introduction Waveforms Features

Inspiral Merger Ringdown
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Introduction Waveforms Features

Gravitational Waves Encode Intrinsic Binary Physics

masses inferred via frequency evolution

/
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Gravitational Waves Encode Intrinsic Binary Physics

masses inferred via frequency evolution
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distance measured via amplitude and masses
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Introduction Waveforms Features

Gravitational Waves Encode Intrinsic Binary Physics

masses inferred via frequency evolution

/

distance measured via amplitude and masses

modulations of amplitude and phase

encode spins
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Introduction Waveforms Features

Gravitational Waves Encode Intrinsic Binary Physics

masses inferred via frequency evolution

/

distance measured via amplitude and masses

modulations of amplitude and phase eccentricity also manifests in
encode spins amplitude and phase modulations
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Beyond GR Waveforms
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@ Beyond GR simulation of dynamical Chern-Simons [Okounkova+ 2023]
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Beyond GR Waveforms
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@ Beyond GR simulation of scalar tensor [Ma+ 2023]
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https://doi.org/10.1103/PhysRevD.107.124051

Introduction Waveforms Features

Parameterized Tests of General Relativity

@ Beyond GR signals are typically characterized by dephasing
hogr(F;0, @) = hgy(f;0)e™ AV (Fe)
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Introduction Waveforms Features

Parameterized Tests of General Relativity

@ Beyond GR signals are typically characterized by dephasing
hogr(F;0, @) = hgy(f;0)e™ AV (Fe)
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Introduction Waveforms Features

Parameterized Tests of General Relativity

@ Beyond GR signals are typically characterized by dephasing
hogr(F;0, @) = hgy(f;0)e™ AV (Fe)

GR param / \‘ Beyond GR param

(Mo, Xeft, ---) (aacss asT, 0@k, --)

@ The parameterized post-Einsteinian (ppE) framework is a common
beyond GR signal morphology [Yunes+ 2009, Li+ 2011]

AV o S (wMF) kD)3
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Introduction Waveforms Features

Parameterized Tests of General Relativity

@ Beyond GR signals are typically characterized by dephasing
hogr(F;0, @) = hgy(f;0)e™ AV (Fe)

GR param / \‘ Beyond GR param

(Mo, Xeft, ---) (aacss asT, 0@k, --)

@ The parameterized post-Einsteinian (ppE) framework is a common
beyond GR signal morphology [Yunes+ 2009, Li+ 2011]

AV o S (wMF) kD)3

where each of these dyy <+ deviation of (M/r)¥ away from GR
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Waveforms Features

Introduction

PPE in Time Domain

@ These ppE deviations in time domain look like [Carson+ 2020]
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https://doi.org/10.1007/978-981-15-4702-7_41-1

Introduction Waveforms Features

How do We Interperate Parameterized Constraints

o Intrinsic physics of the inspiral are encoded in the phase of the
waveform.
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Introduction Waveforms Features

How do We Interperate Parameterized Constraints

o Intrinsic physics of the inspiral are encoded in the phase of the
waveform.

@ The frequency chirp is related to the energy loss rate in the system by
o _ df dE
dt  dE dt
df

o Jr is due to modified Kepler's third law, ‘é—’f due to dissipative
modifications.
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Introduction Waveforms Features

How do We Interperate Parameterized Constraints

o Intrinsic physics of the inspiral are encoded in the phase of the
waveform.

@ The frequency chirp is related to the energy loss rate in the system by
o _ df dE
dt  dE dt

° g—,';- is due to modified Kepler's third law, ‘é—’f due to dissipative

modifications.

@ A beyond GR effect causes relative time delays At(f) and then the
stationary phase approximation for an adiabatic energy loss rate
implies [Yunes+ 2009, Tahura+ 2019]

AV(f) = 27r/det(f)
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Introduction Waveforms Features
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GW energy loss rate Kepler’s third law
(dissipative) (conservative)

N ¥

& o (rM P (14 ev(f))
frequency chirp rate

HF) = tge(F) + AL()

h(f) = hee(f)e 2%

R Ve



Part A : Searching for Nonviolent Nonlocality in the
Gravitational Waves



Part A : Gravitational Waves in Nonviolent Nonlocality Motivation for Nonviolent Nonlocality

Possibilities for the Black Hole Unitarity Crisis

It is proposed that the following three statements cannot be true
simultaneously [Almheiri+ 2012]

@ Hawking radiation is a pure state.
@ Infalling observer feels nothing unusual at the horizon.

© Hawking radiation comes from near the horizon.
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Motivation for Nonviolent Nonlocality
Possibilities for the Black Hole Unitarity Crisis

It is proposed that the following three statements cannot be true
simultaneously [Almheiri+ 2012]

@ Hawking radiation is a pure state.

o Breakdown of unitary evolution.

@ Infalling observer feels nothing unusual at the horizon.
o Infalling observer is destroyed, e.g. firewall

© Hawking radiation comes from near the horizon.

e Horizon structure of a black hole is changed, e.g. nonviolent
nonlocality.

552 Ve


https://doi.org/10.1007/JHEP02(2013)062

Part A : Gravitational Waves in Nonviolent Nonlocality Motivation for Nonviolent Nonlocality

Nonviolent Nonlocality

@ Nonviolent nonlocality is a proposal by Steve Giddings that posits
that the information is transferred via soft modes in the black hole
atmosphere [Giddings 2012, Giddings+ 2016].

@ These metric fluctuations have an extent to ~ rg in contrast to the
fluctuations in a firewall with extent /, < rs

@ We have background metric, and the quantum fluctuations modify it

__ _schw
Euw = 8w + N
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Modifications to the Metric due to Quantum Structure

@ One can construct the most general metric fluctuations [Regge+ 1957],
but the dominant one in ingoing Eddington-Finkelstein coordinates is
[Giddings+ 2016]

Ay = Zn 7 (Vs 1) Yem(o,0)
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Modifications to the Metric due to Quantum Structure

@ One can construct the most general metric fluctuations [Regge+ 1957],
but the dominant one in ingoing Eddington-Finkelstein coordinates is
[Giddings+ 2016]

Ny = Zn vy 1) Yem(o,0)

@ We parameterize the random noise fluctuations as

n‘™(v,r) = Aexp

(r— fs)2] n(t)

n(t) = Colored gaussian noise; (|n(t)|) =1

Su(F) ox 2?;Qexp [ 11/fo]
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https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.97.084035

i e B e
Effective One-Body

@ The effective one-body formalism is an analytical approach to finding
the motion and gravitational waves in GR [Buonanno+ 1998, 2000, Damour
2001].

@ It resums independent information from (a) post-Newtonian theory
and (b) black hole perturbation theory

a+:a1+a2

o T 72 3/5
I// \§] w= 7’]‘ /5 M
M
- me o) @
M // A
Full GR two body problem Point particle in effective spacetime

n-deformed Kerr
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https://doi.org/10.1103/PhysRevD.64.124013

Part A : Gravitational Waves in Nonviolent Nonlocality

Effective One-Body

Waveforms in Nonviolent Nonlocality
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Effective One-Body Details

@ The effective one-body defines an effective metric
D(r)
A(r)
where if n — 0 it approaches the Schwarzschild metric in the
nonspinning case.

@ One can find that solving the mass shell condition p,p,g"" = —1
yields an effective Hamiltonian

dsZe = —A(r)dt® + dr? + r?dQ?

2
N Pg A
Hete = | A(r) <1+r2+DPr2>

@ The particle follows the trajectory of the real Hamiltonian

N 1 N -
Hreal = 77\/1 + 277 (Heff - 1) + O(P(%OM)

where the center of mass motion is ignored.
05/05/25 23 /50



Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Perturbations to Hamilton's Equations

@ Nonviolent nonlocality adds perturbations to black holes which
changes the mass shell condition

pupy (g8 + ) = —1

This causes the real Hamiltonian to be modified

~

Hea = H |+ nﬁm AHreaI )

rea

R 20,150



Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Perturbations to Hamilton's Equations

@ Nonviolent nonlocality adds perturbations to black holes which
changes the mass shell condition
pupy (g8 + ) = —1

This causes the real Hamiltonian to be modified

~

Hea = H |+ nﬁm AHreaI )

rea

@ In the end, we integrate Hamilton's equations which have the form

ﬂ . 8'II_\IreaI
dt op; ’
dpi . 8i_\lreal rad
@~ aq T

where 772 are the nonconservative forces from radiation reaction
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Inspiral with Quantum Fluctuations
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Part A : Gravitational Waves in Nonviolent Nonlocality Waveforms in Nonviolent Nonlocality

Change in Gravitational Wave Strain
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Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Random Dephasing in Frequency Domain

o T
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@ Principal component
analysis yields deviation
that looks like
AW(f) = C2(F)

e ¢ ~N(0,A;) random
variable for each event
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Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Fisher Analysis

e We inject 0 = ({, M, q, Dy, 1,9, a, 0) from realistic astrophysical
populations and compute the estimated variance with the Fisher
matrix

[ = (Do,h|0g;h)

where (.|.) is the standard noise weighted inner product.

R 5,150



Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations
Fisher Analysis

e We inject 0 = ({, M, q, Dy, 1,9, a, 0) from realistic astrophysical
populations and compute the estimated variance with the Fisher
matrix

[ = (99, h| ;)
where (.|.) is the standard noise weighted inner product.

e From this we calculate the marginalized likelihood p(d,|¢) for each
event a. The likelihood for the hyper parameters is

pdlns0) = [ depldlc)p(Clno)

@ From this, we compute the posterior on A = ¢ by combining many
events d;.

R 5,150



Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Constraints on Nonviolent Nonlocality with LIGO

N events
200 400 600 800 1000 1200 1400
LN L L B L L B NN A B L B B L B AN B A

----- Ay =0

o

0.015

0.010

0.005

0.000

Years of Observation
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Part A : Gravitational Waves in Nonviolent Nonlocality Estimating the Upper Bound on Metric Fluctuations

Constraints on Nonviolent Nonlocality with LIGO

N events
0 200 400 600 800 1000 1200 1400
LN L L R R AL B B B B L B L

----- Ay =0

0.015

Metric fluctuations can be constrained to be A < 6 x 1073
with 5 years of O3 data. J
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Part B : Geometric Description of Tests of GR



C R ST
Testing GR with Incorrect Signal Models

@ Gravitational wave data is a combination of signal and noise

d=s+n
s = hsig(etra atr) = hgr(f; Qtr)eiA‘ngr

552 e



Geometry of Waveform Deviations
Testing GR with Incorrect Signal Models

o Gravitational wave data is a combination of signal and noise

d=s+n
S = hsig(gtr, atr) = hgr(f' etr)eiAwbgr

GR param O Beyond GR param
(M Xeft, ---) (@dcs, asT, 6@k, ---)
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Geometry of Waveform Deviations
Testing GR with Incorrect Signal Models

o Gravitational wave data is a combination of signal and noise
d=s+n
. iAW,
S = hsig(etrv atr) = hgr(f. etr)el be

GR param O Beyond GR param
(M Xeft, ---) (@dcs, asT, 6@k, ---)

@ The true beyond GR phase modification is

AV, (f, ) = arpe(f)
@ A ppE test searches for power law deviations

AV = i (M F)KD/3
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Geometry of Waveform Deviations
Testing GR with Incorrect Signal Models

@ Gravitational wave data is a combination of signal and noise

d=s+n
S = hsig(e‘nrv atr) = hgr(f; Qtr)eiA‘ngr

@ The true beyond GR phase modification is

AV, (f, ) = arpa(f)
@ A ppE test searches for power law deviations

AV, = Sy (T M F) K53
© How degenerate with GR parameters is AW, 7
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Geometry of Waveform Deviations
Testing GR with Incorrect Signal Models

@ Gravitational wave data is a combination of signal and noise

d=s+n
S = hsig(e‘nrv atr) = hgr(f; Qtr)eiA‘ngr

@ The true beyond GR phase modification is

AV, (f, ) = arpa(f)
@ A ppE test searches for power law deviations

AV, = Sy (T M F) K53
© How degenerate with GR parameters is AW, 7

@ How accurately ppE AW captures the true deviation AWy, ?
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C R ST
Residual Signal

@ Doing PE on hgjg(6ir, cvr) with a GR waveform hg,(6), the residual
signal

Ah = hsig((gtnatr) - hgr(etr)
~ iatrq/}ahgr(etr)

@ GR parameters are biased due to systematic error [Cutler+ 2007]
emeas — Otr + Agbias

@ The residual signal is perpendicular part of the waveform

Ahy g = Ah— A, Oihgy

552 52150
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C R ST
Residual Signal

@ Doing PE on hgig(0yr, avr) with a GR waveform hg,(6), the residual
signal

Ah = hsig((gtnatr) - hgr(etr)
~ iatr¢ahgr(9tr)

@ GR parameters are biased due to systematic error [Cutler+ 2007]
emeas — Otr + Agbias
@ The residual signal is perpendicular part of the waveform
Ahy g = Ah— A, Oihgy

@ For example if you don't model spins and just try to measure M. and
g, the answers will be biased.
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Part B : Geometric Description of Tests of GR Geometry of Waveform Deviations
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C R ST
Perpendicular SNR and Bayes Factors

e Given an injected signal hgig(6sr, ovtr), we compute the evidence for
both GR and bGR [p(GR|d) and p(bGR|d)]

@ The Bayes factor compares the evidence for a beyond GR theory in
the data

ver _ P(bGRJd)
GR 7 p(GR|d)

@ The Bayes factor behaves like [Vallisneri 2009, 2013]

1 1
log ObGR‘sbGR ~ ipi + pix+ §X2 (bGR injection)
bGR 1 2 S
log Ocn |SGR ~ EX (GR injection)

where p| = ||sig || and x is random unit normal variable.
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Bayes Factor for Parameterized Test

e How accurately does ppE AW, captures the true deviation AWy, ?

552 5,150
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Bayes Factor for Parameterized Test

e How accurately does ppE AW, captures the true deviation AWy, ?
@ The Bayes factor with an incorrect ppE model is
1 1
log O s ~ > (,olipE> + xpPF ¢ §x2
where the captured SNR is
E
PP = FF(Ahpar, Ahyue) oL

o The fitting factor describes how much of the bGR signal is captured

by the ppE model

(Ahisrlants)

FF(AhbGR7 AhppE) ||AhbGRH||Ah

ppE ”
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Bayes Factor for Parameterized Test

e How accurately does ppE AW, captures the true deviation AWy, ?
@ The Bayes factor with an incorrect ppE model is

1 1
log O(p}rl):]s:‘sbGR ~ 5 (plj_pE> + prpE + §X2
where the captured SNR is
E
PP = FF(Ahgr, Ahyug) oo
o The fitting factor describes how much of the bGR signal is captured
by the ppE model

(Ahisrlants)
|AhgggllIl AR

FF(AhbGR, AhppE)

ppE”

@ We have found that that the sensitivity loss is very small
(1 —FF <« 1) for some non-PN theories [Seymour+ 2024].

o AVUnyNL ~ e~f"" has essential singularity at f =0 = no ppE
power
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Visualization of Test

(1-0)p1
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests
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Part B : Geometric Description of Tests of GR Generic Behavior of Parameterized Tests

Monotonic phase deviations have some universal features in how they deviate
fom GR.

@ The ppE phasing terms can capture general deviations from GR. ]
@ A deviation from one ppE phasing term will look like another one in data. ]
< R i
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Degeneracy of Multiparameter ppE
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Singular Value Decomposition Approach

@ Since the ppE parameter tests are degenerate, we need to identify
common modes of the waveform

@ We generalize the singular value decomposition [Pai+ 2013] to identify
nondegenerate deviations from GR

R 50,50
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Singular Value Decomposition Approach

@ Since the ppE parameter tests are degenerate, we need to identify
common modes of the waveform

@ We generalize the singular value decomposition [Pai+ 2013] to identify
nondegenerate deviations from GR

@ The singular value decomposition finds the common features by
identifying Ah, [Tiglio+ 2022]

C(Ahy) = [|Ahy — PalAh,|?
a

where the projection P, projects to an orthonormal SVD basis

PalAhy =Y (Ahs|Ahy) Ah,

«

(Dho|Dhg) = 645

552 50,50
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

Singular Value Decomposition Approach

@ Since the ppE parameter tests are degenerate, we need to identify
common modes of the waveform

@ We generalize the singular value decomposition [Pai+ 2013] to identify
nondegenerate deviations from GR

@ The singular value decomposition finds the common features by
identifying Ah, [Tiglio+ 2022]

C(Ahy) = [|Ahy — PalAh,|?
a

where the projection P, projects to an orthonormal SVD basis

PalAhy =Y (Ahs|Ahy) Ah,

«

(Dho|Dhg) = 645

@ Goal is to find ny.q < nppe but still fit signal well
05/05/25 39/50
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Multiparameter Tests with Singular Value Decomposition
Visualization of Multiparameter SVD

Step 2: AhprE computed by projecting
Step 1: compute Al terms parallel to dgilg

D1

Step 3: Compute Ahgy, with
the singular value decomposition
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Multiparameter Tests with Singular Value Decomposition
Multiparameter SVD Example for GW150914
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Part B : Geometric Description of Tests of GR Multiparameter Tests with Singular Value Decomposition

These SVD waveform modes are orthogonal so that
(iAWSVD ahgr|iAwSVD bhgr) — ngsab J
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Part C : High Frequency Gravitational Wave Detection



GEO600 Optical Layout
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Part C : High Frequency Gravitational Wave Detection

How Detectors Measure Gravitational Waves

@ The light at the photodiode is a mixture of signal and noise.

i(f) = Th(f)h(f) + Z Ti(f)ni(f)

552 0150
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Part C : High Frequency Gravitational Wave Detection

How Detectors Measure Gravitational Waves

@ The light at the photodiode is a mixture of signal and noise.

i(f) = Th(f)h(f) + Z Ti(f)ni(f)

@ The PSD is then equal to

Si(F) = T I TUOPS()

552 0150


https://doi.org/10.1103/PhysRevD.38.2317
https://doi.org/https://doi.org/10.1016/0375-9601(93)90620-F

Part C : High Frequency Gravitational Wave Detection

How Detectors Measure Gravitational Waves

@ The light at the photodiode is a mixture of signal and noise.

i(f) = Th(f)h(f) + Z Ti(f)ni(f)

@ The PSD is then equal to

Si(F) = T I TUOPS()

@ Can we modify the optimal frequency that we are sensitive at by
detuning the location of the signal recycling mirror?
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Part C : High Frequency Gravitational Wave Detection

How Detectors Measure Gravitational Waves

The light at the photodiode is a mixture of signal and noise.

i(f) = Th(f)h(f) + Z Ti(f)ni(f)

The PSD is then equal to

Si(F) = T I TUOPS()

Can we modify the optimal frequency that we are sensitive at by
detuning the location of the signal recycling mirror?

Th(f; ¢srm) can be adjusted to search for gravitational waves at high
frequencies [Meers 1988, Mizuno+ 1993].
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Part C : High Frequency Gravitational Wave Detection
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Part C : High Frequency Gravitational Wave Detection
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Part C : High Frequency Gravitational Wave Detection

Emission frequency (Hz)

104 2 x10% 3 x 104 4 x10*
2 Vector boson clouds
10°4 aLIGO —— ¢=26
GEO600 — =29
— $=20 $=32
— ¢=23 —— $=35

101 4

SNR

1004

10714 ; ‘
1071t 4x 10711 7x1071 10710
Boson rest energy (eV)

o GEOG600 detector improves the detection prospects on boson clouds
(M =0.3Mg, x = 0.7 using model from [isi+ 2018])

@ Quasicircular sub-solar mass mergers 103M, < M < 107! M, have

no improvement in sensitivity. [ ]
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Conclusion

Conclusions

@ Studied the prospects for detecting nonviolent nonlocality in LIGO
o Modeled the waveform in the effective-one-body formalism
e Showed that stochastic deviations to phase are expected
o Stacked together many events to estimate constraints in LIGO

@ lIdentified geometrical meaning of tests of GR

o Explained degeneracies and significance by geometrical framework
o Characterized systematic error of using parameterized models
e Used singular value decomposition to identify common modes

© Modeled the effects of high frequency sensitivity in GEO600 by
modulating the signal recycling cavity location.
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Frequency Domain Dephasing Model

@ From the figure before, we saw that the random metric fluctuations
produce dephasing which has a lot of structure.

@ We use a principal component analysis to model the dephasing in a
simple manner.
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Frequency Domain Dephasing Model

@ From the figure before, we saw that the random metric fluctuations
produce dephasing which has a lot of structure.

@ We use a principal component analysis to model the dephasing in a
simple manner.
@ The mean deviation and covariance matrix are defined as

1= (AV(f))

T(f, ') = (AV(F) — u(f)) (AV(F') — u(F')))
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Frequency Domain Dephasing Model

@ From the figure before, we saw that the random metric fluctuations
produce dephasing which has a lot of structure.

@ We use a principal component analysis to model the dephasing in a
simple manner.
@ The mean deviation and covariance matrix are defined as

1= (AV(f))

T(f, ') = (AV(F) — u(f)) (AV(F') — u(F')))

@ The principal component analysis finds optimal eigenvectors

Y(f,f) = A% z(f)z(f),

552 Ve



Hierarchical Tests of GR

@ What we have shown is that nonviolent nonlocality predicts stochastic
deviations to the phase AW(f) = (z(f).

@ This is of the same form ot the hierarchical tests of GR [isi+ 2019]
which are published in the LIGO papers [LIGO+ 2021].

ddi ~ N (pk, ok)

where these are the deformation coefficients.
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Fisher Analysis
e We inject 0 = (¢, Mc, q, Dy, t,9, a, ) from realistic astrophysical

populations and compute the estimated variance with the Fisher
matrix

[ = (3o,h|0g;h)

where (.|.) is the standard noise weighted inner product.
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Fisher Analysis

e We inject 0 = (¢, Mc, q, Dy, t,9, a, ) from realistic astrophysical
populations and compute the estimated variance with the Fisher
matrix

[ = (3o,h|0g;h)

where (.|.) is the standard noise weighted inner product.

e From this we calculate the marginalized likelihood p(d,|¢) for each
event a. The likelihood for the hyper parameters is

p(dljs,0) = / dCp(d|C)p(Cu. o)

@ From this, we compute the posterior on the hyper parameters

p({d} |, 0) Hp (dalps, 0)
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Bayes Factor

@ To compare the consistency with GR, we use the log Bayes factor

d} [MnvnL)
BNYNL _ |60 (P({
oR p({d} [Mcr)
where Mggr and MyynL are the models.

@ This is a scalar statistic which quantifies whether GR is preferred
(positive) or NVNL (negative).
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Constraints on Nonviolent Nonlocality with CE
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GEO600 Noise Budget
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Detuning LIGO
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Sub Solar Mass Detuned GEO600
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Boson Clouds Full Plot
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