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Classical Tests of GR

Classical Tests of General Relativity




Classical Tests of GR

© Classical Tests of General Relativity
@ Perihelion Precession
@ Deflection of Light
@ Gravitational Redshift of Light
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Classical Tests of GR

General Relativity vs Newtonian Gravity

@ Are we accelerating right now?
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Classical Tests of GR

General Relativity vs Newtonian Gravity

@ Are we accelerating right now?

@ The floor is exerting a force, and we are accelerating upward. No
freefall for us luckily!
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el
Why Are Orbits in Newtonian Gravity Special?

Planet

Perihelion O Sun Aphelion

@ Kepler found that bound orbits follow and ellipse.
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Classical Tests of GR Perihelion Precession

Why Are Orbits in Newtonian Gravity Special?

Planet

Perihelion O Sun Aphelion

@ Kepler found that bound orbits follow and ellipse.
@ Generally for the central force problem, there are six degrees of
freedom (x, y, z) and (px«, py, pz) but only four conserved charges E

and L.

7/56
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Perinelion Precession
Why Are Orbits in Newtonian Gravity Special?

Planet

Perihelion O Sun Aphelion

@ Kepler found that bound orbits follow and ellipse.

@ Generally for the central force problem, there are six degrees of
freedom (x, y, z) and (px«, py, pz) but only four conserved charges E
and L.

@ It turns out that there is an additional conserved quantity called the
Laplace-Runge—Lenz vector for V(r) ~ r=t and V/(r) ~ r?

Brian Seymour (Caltech) LIGO SURF Seminar 7/56



Classical Tests of GR Perihelion Precession

General Relativity vs Newtonian Potential

“veﬂ

Circular orbit at
the maximum of
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potential (which
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the Newtonian
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potential) potential
Newtonian
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Circular orbit at the The only circular orbit in the
minimum of the Newtonian potential (which
relativistic potential occurs at the minimum)

@ When you are very close to a start, general relativity deviates from
Newtonian gravity.
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Classical Tests of GR Perihelion Precession

General Relativity Precession
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@ Due to the shift in the general relativity potential, the orbit of close
bodies such a Mercury will precess
@ This was one of the things which proved GR correct.
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Deflection of Light
Theory of Deflection of Light

@ If you measure the deflection of light around a massive body, you find
that general relativity deflects it twice as much as Newtonian gravity.
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Deflection of Light
Theory of Deflection of Light

@ If you measure the deflection of light around a massive body, you find
that general relativity deflects it twice as much as Newtonian gravity.

@ For a nonrelativistic source the Newtonian metric

ds®> = — (1 — 2¢) dt* + dx* + dy* + dz* (1)
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Deflection of Light
Theory of Deflection of Light

@ If you measure the deflection of light around a massive body, you find
that general relativity deflects it twice as much as Newtonian gravity.

@ For a nonrelativistic source the Newtonian metric

ds®> = — (1 — 2¢) dt* + dx* + dy* + dz* (1)

@ However, for a relativistic source, in a weak gravitational field it is
ds® = — (1 — 2¢) dt* + (1 + 2¢) (dx* + dy* + dz*) (2)

@ Thus objects traveling quickly with velocity v ~ ¢ [such as light] will
deflect very differently!
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Classical Tests of GR Deflection of Light

Eddington experiment 1919
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Gravitaional Redshift of Light
Gravitational Redshift of Light

@ Due to the equivalence principle, the light emitted will be Doppler
shifted as it enters a gravitational potential.

1
>\oo rs 2

1+z= =(1-= 3

2= ( Re> (3)

o For earth, the redshift is extremely small around 1075,
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S iR ke
Interstellar Gargantua BH

@ How did the astronauts survive the blueshift from the supermassive
BH in interstellar? If time dilation is 1 hour per 7 years, then light has
its frequency multiplied by 60000!

@ Maybe the waves aren’t the biggest problem.
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Modern Tests of GR
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Modern Tests of GR

© Modern Tests of General Relativity
@ Pulsar Tests
@ Double Pulsar J0737-3039
@ Eot-Wash
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Modern Tests of GR Pulsar Tests

Binary Pulsar : Indirect Evidence of Gravitational Waves

@ A pulsar is a rapidly neutron star with a strong magnetic field.

@ By observing the radio pulses, you can measure the masses of a
binary, and their dynamics.
@ Above is an illustration of a white dwarf - pulsar system that was used
by Hulse and Taylor to find indirect evidence of GW.
LIGO SURF Seminar 17 /56



Modern Tests of GR Pulsar Tests

Measuring Pulses

@ By seeing how a pulsar’s pulses line up, we can measure binary
parameters with various effects.
@ Below is the first pulses measured in 1967 with the discovery of a

pulsar 1.

JOY DQIVISEN

1 The image is actually an album that my friend Josh has a shirt of.
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Pulsar Tests
Orbital Decay Rate of Hulse Taylor Pulsar

Nobel Prize in 1993 — indirect detection of gravitational waves!
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Double Pulsar J737-3039
Double Pulsar

@ There are many pulsar binaries with white dwarf companions or
neutron star companions. However there is only one binary with both
objects being a detectible pulsar?.

@ Having both pulses available for measurement is incredibly useful for
testing GR, this system gives the best constraints of orbital
parameters.

2 As far as | know, it is an open question  whether all neutron stars are pulsars or not.
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Modern Tests of GR Double Pulsar J0737-3039

Double Pulsar
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el
Inverse Square Law Test

@ String theory predicted that there are extra dimensions.

o Table top tests search for these with signatures by looking for
deviations of the inverse square law.
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Tests of GR with LIGO
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Tests of GR with LIGO

@ Tests of General Relativity with LIGO
@ Review of GW
@ Parameterized Tests of GR
@ Parameterized Test Example: Are BH charged?
@ Mass of Graviton
@ Residuals
@ Spin Induced Quadrupole
@ Ringdown
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Tests of GR with LIGO Review of GW

Review Gravitational Waves in Freugency Domain
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eech
Modeling Gravitational Waves in GR

@ We want to describe them in the frequency domain.

h(f) = AA(f)e™D)
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eech
Modeling Gravitational Waves in GR

@ We want to describe them in the frequency domain.
h(f) = AA(f)e'" ")
@ To leading order, the phase and amplitude are

3
wﬂzﬁm—@—g+ﬁ§mwrm

£-7/6
Dy

A(f) x
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eech
Modeling Gravitational Waves in GR

@ We want to describe them in the frequency domain.
h(f) = AA(f)e"")

@ To leading order, the phase and amplitude are

s 3
U(f) = 2nfte — pe — — + o (TMF)~2/3
(f) = 2nftc — ¢ 4+12877(7r )
£-7/6
A(f
(f) o =5,

@ A is due to the antenna pattern of the GW instrument
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Tests of GR with LIGO Parameterized Tests of GR

Effect of Dephasing in Time Domain

@ Goal: We want to rewrite the inspiral in a way that
beyond GR gravitational waves like the following:

we can describe
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Tests of GR with LIGO Parameterized Tests of GR

Parameterized Deviations from GR

@ Generally, you can write the following GR frequency domain phase as

7
T 3 _ i
W(f) =2mfte — ge — 5 + %(ww) 3N gi(aME) B (7)
i=0

where ¢; a long but known formula.
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Tests of GR with LIGO Parameterized Tests of GR

Parameterized Deviations from GR

@ Generally, you can write the following GR frequency domain phase as

7
U(f) = 2rfte — e — — +%(WW S MO (1)

where ¢; a long but known formula.
o If you look at the LIGO papers, they bound the

deformation parameters §¢. They are the fractional deviation to the
above term.

SUarvr = 128 Z¢,5¢ (mMf)(i=5)/3 (8)
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Parameterized Tests of GR
Parameterized Deviations from GR

@ Generally, you can write the following GR frequency domain phase as

7
U(f) = 2rfte — e — — +%(WW S MO (1)

where ¢; a long but known formula.

o If you look at the LIGO papers, they bound the
deformation parameters §¢. They are the fractional deviation to the
above term.

OVgIMR =

128 Z¢,5¢ (mMf)i=9)/3 (8)

@ Note that | may show some plots with 5 which is proportional to the
deformation parameters*

B o 5¢n (9)
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Tests of GR with LIGO Parameterized Tests of GR

Results for Constraints on Deformation Parameters

Below is constraints for each event [each line]®
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Tests of GR with LIGO Parameterized Tests of GR

Results for Constraints on Deformation Parameters

Combining constraints for each event we get the following®
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Tests of GR with LIGO Parameterized Tests of GR

How do We Interperate Parameterized Constraints

@ The frequency domain phase is intimately related to the how the
frequency of the binary chirps [click to hear chirp].

" application to beyond GR in Yunes et al 0909.3328, Tahura et al 1907.10059
LIGO SURF Seminar 3156


https://www.youtube.com/watch?v=aWX-BY-A9CY

Tests of GR with LIGO Parameterized Tests of GR

How do We Interperate Parameterized Constraints

@ The frequency domain phase is intimately related to the how the
frequency of the binary chirps [click to hear chirp].

@ The frequency chirp is related to the energy loss rate in the system by
df  df dE

4t = dE di (10)

° % is due to modified Kepler's third law, 9€ due to extra energy loss

' dt
[eg radiation].

7 application to beyond GR in Yunes et al 0909.3328, Tahura et al 1907.10059
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Tests of GR with LIGO Parameterized Tests of GR

How do We Interperate Parameterized Constraints

@ The frequency domain phase is intimately related to the how the
frequency of the binary chirps [click to hear chirp].

@ The frequency chirp is related to the energy loss rate in the system by

df df dE
i~ dEdt (10)

° % is due to modified Kepler's third law, % due to extra energy loss

[eg radiation].

@ Solving the above equation for t(f) and then using the following
relation which is true from the stationary phase approximation for an
adiabatic energy loss rate *

€(F) = ;ﬂ‘“l;ﬁf) — w(f) :27r/df £(F) (11)

" application to beyond GR in Yunes et al 0909.3328, Tahura et al 1907.10059
LIGO SURF Seminar 3156


https://www.youtube.com/watch?v=aWX-BY-A9CY

e e olich
How do GW and Binary Pulsars Compare
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Tests of GR with LIGO Parameterized Test Example: Are BH charged?

Electromagnetism Example

@ As an example, | am going to show how one could bound whether
black holes have electric charge. Let us say that each BH has an
electric charge which is

m
=€e— 12
9= (12)
@ The binding energy is
E = kP2 _ 22 (13)
r r
@ The energy loss rate for a circular orbit (Lamor formula)
: 2q7a7 _ o4mim3
Eem = z]: k 3 ~ € 34 (]_4)
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Tests of GR with LIGO Parameterized Test Example: Are BH charged?

Conservative Modification to FD Phase

You can show that

d(En + Eem)  dEn 2,
= 14+ = 1

df ar \' 3¢ (15)
We find f = ¢£dE

df df 2¢2

— = — 1+ — 16

i, 075 (19
We can end up showing that

U(f) =Wg(f) |1+ ?(wl\/lf) (17)
Thus,
2¢?

5~ 0o~ 107! = <04 = g <2x10% Coulombs  (18)
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Parameterized Test Example: Are BH charged?
Dissipative Modification to FD Phase

The energy loss rate can be found to be

. . 2/3
E=E, (1 - 62%72(/\/1;‘)—2/3) (19)
. 2/3
f =ty (1 - 62—57; . (Mf)2/3> (20)
Thus the phase is
4/3
U(f) = g (f) <1 + 62% (7r/\/lf)_2/3> (21)
Therefore,
2 bt/ 20
€ ~ §p_g ~ 1073 = €<0.07 = g < 4 x 10%° Coulombs

126
(22)
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Tests of GR with LIGO Parameterized Test Example: Are BH charged?

EM Example Conclusion

@ Here we showed that we can bound the charge of our black holes.

@ The waveform is both modified by (a) changes to the binding energy
E(f) and (b) energy dissipation E(f).

@ Since binding energy deviation occurs as f* while the energy loss
happens at f—2, the dominant constraint is coming from the latter

@ Binding energy modifies the Kepler's 3rd law while this example has
scalar dipole radiation.
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Tests of GR with LIGO Mass of Graviton

Massive Gravity

@ One interesting thing about gravitation is that the only massless spin
2 field must couple to the stress energy tensor, and thus is GR. This
makes it difficult to generalize beyond GR?.

@ One such way is to make the graviton have mass. This would cause it
to behave like a Yukawa potential

(23)

@ This is motivated by a couple of directions:
@ Alternatives to Dark Energy for acceleration of expansion of the

Universe.
@ Modification of the galaxy rotation curves instead of dark matter (cf

Modified Newtonian dynamics).

9 Wei
einberg QFT
Brian Seymour (Caltech) LIGO SURF Seminar 37/56



Ll
Testing GR with GW170817
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Tests of GR with LIGO Mass of Graviton

Constraining the Mass of the Graviton

o If we know that GW170817 had the light delayed by only 2 seconds,
how can we bound the graviton mass?

@ We know from special relativity

(24)
Thus

Brian Seymour (Caltech)
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Tests of GR with LIGO Mass of Graviton

Constraining the Mass of the Graviton

o If we know that GW170817 had the light delayed by only 2 seconds,
how can we bound the graviton mass?

@ We know from special relativity

E? = p2 + mz, (24)
Thus ) )
dw 9 mg

At=D; (1- vg) (26)

o If D;/c =40 Mpc/3 x 103m/s, and At = 2 sec, and E = h x 100Hz
then what is mg?
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Tests of GR with LIGO Mass of Graviton

Constraining the Mass of the Graviton

o If we know that GW170817 had the light delayed by only 2 seconds,

how can we bound the graviton mass?

@ We know from special relativity

E2:p2+mz,

2 2
f!&i —vi=1= ffﬁ;
dk € E2

At =D, (1 — Vg>

Thus

(24)

(25)

(26)

o If D;/c =40 Mpc/3 x 103m/s, and At = 2 sec, and E = h x 100Hz

then what is mg?

e You find vg/c =1—4x 10716 and my =3 x 10719) =2 x 107! eV.
This estimation is pretty close to the GWTC3 number of

mg < 1.2 x 10-23eV/c*.
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Tests of GR with LIGO Mass of Graviton

Generalized Dispersion Relation

You can generalize the dispersion to have powers

10
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A, <0 A, >0
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Residuals
Residuals Test

@ In any detection, you are measuring a combination of noise and signal.
d=n+h (28)

for Gaussian noise, the probability of seeing a particular realization of
it is given by the Whittle likelihood

p(n) o exp [—;(n|n)} — exp [—i/df";((?)'z] (20)

@ If you assume that the detector has Gaussian noise, you could see if
the residuals have any additional power in them.
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Tests of GR with LIGO Residuals

Residuals Test

@ The real analysis is much more complicated due to detectors not
being perfectly modeled by Gaussians. It is done with Bayeswave,

Sophie will know more about this!
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ST ez Qe
Spin Induced Quadrupole

o If black holes are not Kerr, then their quadrupole moment would be
different.

@ For Kerr BH in GR, the ks = 1.

— Restricted
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Ringdown Tests
@ Ringdown should be described by

- Tifpmn (t —
b () — i r>7Z > ZAemnexp[ i] ) T

—2m=—¢n (14 2)Temn 14z
(30)
o pSEOBNRvV4HM ringdown analysis
fymd = fémo mi, m2, X1, X2) ,
Tgn% = 7—ZmO (ml) m2, X1, XZ) .
(31)

fomo = fim (1 + 57Aczm0) ;
TYmo — TEmO (1 + (57A'gm0) .
@ Measure masses and spins in inspiral, and measure QNM with

ringdown, and compare deviation.

o Alternatively, you can measure two QNM since Kerr only has two
parameters M, x
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Ringdown
Ringdown Tests Results
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Ringdown
Ringdown Tests Results |l

Probability density

1.0

Brian Seymour (Caltech) LIGO SURF Seminar 46 /56



Tests of GR with LIGO Ringdown

Polarization Test

o If a theory is not general relativity, then there will be additional
polarizations of gravitational waves.

Gravitational Wave Polarizations

o] o] d

1

an
L/
an
NI

Tensor x Scalar L Vector 2

—wt=0,7 wt=7/2 et = 3m[2
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Ringdown
Results from GWTC3

LE VIIL The table summarizes the choices of basis used in the polarization test. x, X, b, 1, x, and y represent the plus mode, cross mode,
scalar breathing mode, scalar longitudinal mode, vector x mode, and vector y mode respectively. The first column shows the polarization
hypothesis being tested, the third column reports the number of basis modes, and the last column reports the number of free parameters that are
‘marginalized over in the computation of the evidence,

Hypothesis ~ Description  #of basis modes ~ Mode(s)  Basis mode(s) Free parameters

Hia Pure tensorial 1 +x + 5
Hys Pure vectorial 1 Xy x 5
H Pure scalar 1 b b 2
Fhrs, Tensor-scalar 1 4%, b1 + 9
Hr,s Tensor-vector 1 X5y + 9
Hus, fector-scal 1 xu.b,1 x 9
Hivs;  Tensor-vector-scalar 1 +%.b,Lxy + 13

fra Pure tensorial 2 + +ox 2
Hya re vectorial 2 xy Xy 2
Hisa Tensor-scalar 2 +%,b, 1 +b 11
Hrva Tensor-vector 2 HXx5y +x 1
Husa Vector-scalar 2 xu.b,1 xb 11
Hivss  Tensot-vector-scalar 2 +xblyy  +b 19

TABLE IX. Combined log, Bayes factors 5 for various polarization hypotheses against the teasor hypothesis, using both 2-detector and
3-detector events. Polarization states have been projecied onto one basis-mode as detailed in Sec. VIL Positive (negalive) values indicate that the
hypothesis indicated in the superscript is favored (disfavored) with respect to the tensorial hypothesis. Etror barsrefer to 90% credible intervals.
Events  log B}  logoBY  logiB]  logioB]' logyB}® logy B

Ol 004007 0092007 0042007 0092007 0094007 0072007
004012 008+0.12 0222012 0092012 0352012
. 1042020 0255020 0072020 ~L05£020 ~0.18 £020
O3b  —1932017 0792017 0.7 £0.17 ~0.07 £0.17 ~0.86+0.17 ~032£0.17

Combined —4.24+030 ~1.70£0.30 020030 0312030 -1.73+030 ~0.08 £0.30

TABLE X. Combined log,, Bayes factor 5 for various polarization hypotheses against the tensor hypothesis, for 3-detector events, Polarization
states been projected onto two basis-modes as explained in Sec. VIL. Positive (negative) values indicate that the hypothesis indicated in the
superscript is favored (disfavored) with respect to the tensorial hypothesis. Exror bars refer to 90% credible intervals.

Bvews log, B log BF log B logg B log, 5"
o1 - - - - -
02 0.05+0.03 001£0.03 -0.02+0.03 0.06+0.03 0.01+0.03
03a —037+0.12 =077 £0.12 -0.72+0.12 -0.73 + 0.12 —-0.91 £ 0.12
03b ~0.09 £0.10 -0.22 £ 0.10 —0.35 £ 0.10 —0.38 £ 0.10 —0.38 £ 0.10
‘Combined —0.41 £0.16 —0.98 £0.16 —1.09 £ 0.16 —1.05 £ 0.16 —1.29 £ 0.16
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Stochastic Background

Stochastic Background
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Stochastic Background

© Stochastic Background
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Stochastic Background

@ Hellings-Downs curve detected by radio astronomers such as
Nanograv:

@ Background from many binary black holes. Pat Meyers will probably
give a talk which have more detail.

@ The stochastic background allows us to measure extra polarizations of
GW if we only have less than 5 detectors.
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Expected Pattern

5 0.80 _
g —
| . —
s O%lpredicted
_ L o

% 040 R T o7O .
g? 0.20 ‘:F\;_‘, 1 T+ T () - =
3 - TN e TTTT L™t
£ 0.00 =G \\o-n 0. 7 2

(0]
.cc> ~ 0—0/_
5-0.20 1T -
© .
(]
£ -0.40
3 0° 30° 60° 90° 120° 150° 180°

Brian Seymour (Caltech)

Angular separation between pulsars, &ab

LIGO SURF Seminar

52 /56



Stochastic Background Polarizations Beyond GR
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Revisiting Landscape of Testing GR

Redshift
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Conclusion

Conclusion

@ Solar system tests are good for incredibly precisely measuring effects,
though they are in the weak field and slowly moving regime.

@ Pulsars can tell you how gravity behaves for strongly self gravitating
objects which are moving slowly.

@ Gravitational waves can help test general relativity when curvature is
strong, velocities are near the speed of light, and the gravitational
field is highly dynamical.
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Suggested References for Further Reading

Michelle Maggiore "Gravitational Waves” | and 11 @

Poisson and Will "Gravity: Newtonian, Post-Newtonian, Relativistic”
Clifford Will "Theory and Experiment in Gravitational Physics”
Clifford Will 1403.7377 — review paper

Yunes et al 0909.3328 — parameterized tests
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