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Motivation for Testing General Relativity

General relativity is currently the most well-tested theory
of gravity.

Nevertheless, it must be an effective field theory of some
quantum theory of gravity.

Gravity has been tested very stringently in the weak field
through solar system and cosmological observations.

It has been tested less however in the strong field regime.
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Tests with Pulsar Timing

Radio observations of pulsar binaries can be used to find
their system and orbital properties through pulsar timing.

Pulsar timing provides precision tests of gravity and has
placed stringent bounds on a broad class of theories
beyond general relativity.

Typically this is done with binary pulsar systems such as
double pulsar, pulsar-neutron star, and pulsar-white dwarf.
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Black Hole-Pulsar Binary

So far, neither gravitational wave or electromagnetic
observations have found a black hole-neutron star binary.

The Five-hundred-meter Aperture Spherical radio
Telescope (FAST) under construction or the
next-generation Square Kilometer Array (SKA) may find a
binary with a millisecond pulsar orbiting a black hole.

We will consider the possibility of testing general relativity
if a radio telescope finds a black hole-pulsar binary.

If found, a black hole-pulsar binary would be a powerful
test of general relativity.
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Measurable Quantities

Pulsar timing can be used to measure binary parameters
such as masses, orbital period, et cetera.

Specifically, two quantities are of particular importance for
this presentation.

The orbital decay rate is the time derivative of the orbital

period Ṗ.
The black hole quadrupole moment Q.

I will denote the δ and δQ to be the fractional error of the
orbital decay rate and black hole quadrupole moment
respectively.
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Methodology

Measurements of the orbital decay rate and quadrupole
moment place constraints on the upper bound of theory
parameters.

Essentially, the maximum possible upper bound on
violation from general relativity is constrained by the
measurement error.

Since a black hole binary has not been found yet, we must
instead rely on simulated measurement uncertainties to
test gravity.

Simulations of
black hole-pulsar observations

Binary Parameter
Measurabilities: δ, δQ

Theory Constraints
e.g. Ġ , mgFocus of talk
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Utility of Black Hole-Pulsar Tests

Black hole-pulsar binaries are powerful tests of general
relativity due to their slower relative velocity (compared to
other pulsar binaries).

The relative velocity of a binary is given by
v = (2πM/P)1/3. Although the mass is larger, the slower
orbital period more than compensates for larger total mass.

The result is a relative velocity smaller that neutron-pulsar
binaries by about a factor of 2.

As I will show later, this makes black hole-pulsar binaries
advantageous for constraining theories which have a
dependence on velocity to a negative power.
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Orbital Decay Rate in General Relativity

Orbital decay rate in general relativity is described by the
following equation.

For the rest of this presentation, a subscript with GR
represents the quantity in general relativity.

Ṗ

P

∣∣∣
GR

= −96

5
G 5/3µM2/3

(
P

2π

)−8/3

FGR(e) (1)

FGR(e) ≡ 1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
(2)
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Simulated Orbital Decay Rate Fractional Error

The orbital decay rate fractional error is given by

∣∣∣∣ Ṗ
P
− Ṗ

P
|GR

Ṗ
P
|GR

∣∣∣∣ < δ.
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Generic Formalism for Orbital Decay Rate

We use the following formula characterizing orbital decay
rate in modified theories of gravity.

Ṗ

P
=

Ṗ

P

∣∣∣∣
GR

(
1 + γ v2n

)
(3)

The γv2n term gives the leading correction to general
relativity where γ is theory dependent and v is the
relativity velocity.

The n gives the post-Newtonian order (PN) of the theory.

Since the relative velocity of a black hole-pulsar binary is
lower than other pulsar binaries, it constrains theories with
negative post-Newtonian order more stringently.

Combining this with the previous slide, we have |γ| < δ
v2n .
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Astrophysical System Bounds by Post-Newtonian
Order
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Black Hole-Pulsar and Double Pulsar Comparison
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Varying Gravitational Constant

First, I will consider the constraints possible on a varying
gravitational constant.

The gravitational constants value can be time dependent
in many modified theories of gravity.

For example, the gravitational constant can depend on a
scalar field that is coupled to the metric.

Corrections to orbital decay rate enter in at −4
post-Newtonian order, so a black hole-pulsar binary is very
advantageous to constrain this.

|Ġ |
G

< −1

2

Ṗ

P

∣∣∣∣
GR

δ

1−
(
1 + mc

2M

)
sp −

(
1 +

mp

2M

)
sc

(4)
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Varying Gravitational Constant Bounds
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Varying Gravitational Constant Discussion

A black hole-pulsar constraint on Ġ is useful to include
with stronger solar system measurements for multiple
reasons.

1 First, solar system experiments, such as NASA Messenger,
measure time variation in G differently than strongly self
gravitating bodies (they measure ∂t(G M�)/G M�
instead of Ġ/G ).

2 Binary pulsar measurements capture new effects not
present in solar system experiments. This is because there
can be a strong field enhancement of the Ġ effect in some
scalar-tensor theories.

Thus, black hole-pulsar constraints on Ġ provide a
complementary bound to solar system experiments.
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Lorentz-Violating Massive Gravity

We will consider bounds on mg in a Lorentz-violating
theory of gravity.

This is a Fierz-Pauli action with a modified mass term
with the following properties.

1 The mg → 0 limit recovers linearized general relativity.
2 The wave equations give standard form in the linearized

theory: (�− m̄2
g )hµν = −16πTµν .

The correction to Ṗ enters at −3 PN order.

m2
g ≤

24

5
(1− e2)1/2FGR(e)

(
2π~
c2P

)2

δ (5)
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Lorentz-Violating Massive Gravity Bounds
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Cubic Galileon Massive Gravity

We now consider another type of massive gravity capturing
the screening effect called the Vainshtein mechanism.

The Vainshtein mechanism suppresses deviations away
from general relativity inside the Vainshtein radius.

Galileon models are also motivated to explain the
accelerating expansion of our universe.

The largest correction to Ṗ comes from the quadrupolar
radiaion at −2.75 PN.

mg ≤
27

5λ2

1

FCG(e)

M3
PL

M
1
2M2

Q

1

Ω
1
2
P(ΩPa)3

LGR δ (6)
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Cubic Galileon Massive Gravity Bounds
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General Screen Modified Gravity

General screened modified gravity is a scalar modification
to GR with a fifth force and screening mechanism.

The scalar field induces non-GR effects on cosmological
scale that can explain current accelerating expansion of
our universe without introducing dark energy and induces
a screening mechanism in our solar system.

The correction enters in at the −1PN order.

∣∣∣∣φVEV

MPL

∣∣∣∣ ≤ mp

Rp

(
2πM

P

)1/3 [192

5

FGR(e)

FSMG(e)
δ

]1/2

(7)
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General Screen Modified Gravity Bounds
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Modification of Black Hole Quadrupole Moment

Previously, we have examined bounds with orbital decay
rate. However, if the post-Newtonian order is positive, a
black hole-pulsar binary places weaker constraints than
other binary pulsar systems.

In this section, we will examine constraining gravity by
measuring the quadrupole moment of either a stellar or
supermassive black hole-pulsar binary.

Any deviation from the Kerr black hole quadrupole
moment will modifiy the orbit.
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Measurement of Black Hole Quadrupole Moment

A non-vanishing quadrupole moment Q of a black hole
produces a periodic perturbation of the pulsar’s orbit.

Pulsar timing can measure the quadrupole moment
through the Roemer time delay.

The Roemer time delay is the modulation in travel time
for light due to a the pulsar’s orbit.

Specifically, the Roemer time delay is the time for light to
travel between the closest and furthest points of a pulsar’s
orbit to earth.

The black hole quadrupole moment can be then be
extracted by observations of the Roemer delay.
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Possible System Binaries

We will use simulations of the fractional measurement
accuracy δQ of the black hole quadrupole moment for two
cases.

1 A millisecond pulsar orbiting a stellar-mass black hole.
2 A millisecond pulsar orbiting Sgr A*.
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Simulated Black Hole Quadrupole Moment
Measurement Accuracy
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Motivation for Quadratic Curvature Modifications

Recall that the Einstein-Hilbert action in general relativity
contains only linear terms in curvature with the Ricci
scalar.

SGR =
1

16π

∫
d4x
√
−gR (8)

In the following sections, we will investigate modifications
of general relativity which add scalar fields coupled
through quadratic-curvature corrections to the
Einstein-Hilbert action.

This is motivated by various theories of quantum gravity.
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Dynamical Chern-Simons

Dynamical Chern-Simons is a parity-violating and
quadratic-curvature theory of gravity with a pseudoscalar
field motivated by string theory and loop quantum gravity.

The pseudoscalar field θ is coupled to the Pontryagian
density with coupling constant αdCS in the action
αdCS

4 θ R∗ µνρσR
µνρσ.

This modifies the Kerr black hole quadrupole moment (in
the small coupling approximation ζdCS � 1),

Q = QGR,k

(
1− 201

1792
ζdCS +

1819

56448
ζdCSχ

2

)
. (9)

Thus, constraints can be placed with (using ζdCS =
α2

dCS

κgm4
BH

),

α
1/2
dCS ≤ 4

√
21

(
κg δQ

12663− 3638χ2

)1/4

mBH . (10)
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Dynamical Chern-Simons Stellar Black Hole
Bounds

Current bounds:
√
αdCS = O(108) km
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Dynamical Chern-Simons Super Massive Black
Holes Bounds

The small coupling threshold for αdCS
1/2 is equal to

3× 106 km for Sgr A*.

The strongest possible bound comes from full orbit
measurements from a PSR orbiting Sgr A*.

Unfortunately, such strongest bound is above the small

coupling threshold of α
1/2
dCS by about 20%.

Thus, our black hole quadrupole formula as no longer
valid, so we cannot place bounds on dynamical
Chern-Simons with Sgr A*-pulsar measurements.
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Einstein-dilaton Gauss-Bonnet

Einstein-dilaton Gauss-Bonnet is a theory of gravity motivated by
string theory with scalar field and a curvature-squared coupling.

We consider a linear coupling between the scalar field and gravity
which adds an extra term αdCSφR

2
GB to the action where scalar field φ

is coupled to the Gauss-Bonnet term with coupling constant αEdGB.

This modifies the Kerr black hole quadrupole moment (in the small
coupling approximation ζEdGB � 1),

Q = QGR,k

(
1 +

4463

2625
ζEdGB − 33863

68600
ζEdGBχ

2

)
. (11)

Constraints can be placed with (using ζEdGB =
α2

EdGB
κgm

4
BH

),

α
1/2
EdGB ≤ 31/4 703/4

(
κgδQ

1749496 − 507945χ2

)1/4

mBH . (12)
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Einstein-dilaton Gauss-Bonnet Stellar Black Hole
Bounds

Current bounds:
√
αEdGB = 1.9 km

40 50 60 70
m

BH
 [M

O
].
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20

30

40

|α
E

d
G

B
|1

/2
 [

k
m

] EdGB

dCS

20

30

40

50
|α

d
C

S
|1

/2
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k
m

]

Small Coupling Threshold

θ
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2
)

θ
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)
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 = 45

o
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Conclusion

We have studied how well one can probe alternative
theories of gravity with both orbital decay rate and black
hole quadrupole moment measurements if a black
hole-pulsar binary is found.

We have shown that a black hole-pulsar binary can place
competitive bounds with orbital decay rate modification to
theories with negative post-Newtonian order (specifically
Ġ ).

We showed that the Roemer time delay for certain
stellar-mass black hole-pulsar configurations can be used
to place bounds on dynamical Chern-Simons gravity that
are six orders of magnitude stronger than the current most
stringent bounds.

Thus, the detection of a black hole-pulsar binary will allow
new tests of gravity.
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Future Work

The black hole quadrupole moment formula in dynamical
Chern-Simons could be improved to arbitrary spin through
recent numerical developments.

It is interesting to consider bounds on dynamical
Chern-Simons through measurement of advance rate of
periastron in a black hole-pulsar binary instead of
quadrupole moment measurement.

This analysis could be extended to black hole-pulsar
bounds on Lorentz-violating theories, such as
Einstein-æther and khronometric gravity, in combination
with new GW170817 constraints.
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Summary Table for Orbital Decay Rate
Modification
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